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Abstract

We consider the statistical description of the break-up of an immiscible fluid lump immersed into a fully
developed turbulent flow. We focus on systems where there is no relative velocity between the continuous
and dispersed phases. In this case, particle fragmentation is caused only by turbulent velocity fluctuations.
The most relevant models proposed for the particle break-up frequency and for the shape of the daughter
particle size distribution are reviewed. Their predictions are compared to recent experimental data, ob-
tained for the break-up of an air cavity immersed into a high Reynolds number, turbulent water jet. Models
based on purely kinematic arguments show the best agreement with the experimental data. � 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

A statistical description of a dispersed, two-phase flow can be obtained by means of a distri-
bution function pðD;x; v; tÞdDdxdv, defined as the probable number of particles with diameters in
the range dD about D, located in the spatial range dx about the position x, with a velocity range
dv about v, at time t. A Boltzmann-type equation, often referred to as the population balance
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equation, can be written to describe the temporal and spatial rate of change of the distribution
function p

op
ot

þrx � ðvpÞ þ rv � ðFpÞ ¼ � o

oD
ðRpÞ þ _QQ0

b þ _QQ0
c þ C; ð1Þ

where the rates of change of p with time due to break-up and coalescence are denoted by _QQ0
b and

_QQ0
c, respectively. The force per unit mass acting on a particle is denoted by F, and the rate of
change with time of its diameter due to evaporation, condensation, or dissolution is given by R. C
represents the rate of change of the distribution function caused by collisions which do not result
in coalescence. Integrating over the whole velocity space to eliminate the velocity dependence, one
obtains the following (Williams, 1985):

on
ot

þrx � ð�vvnÞ ¼ � o

oD
ðRnÞ þ

Z
_QQ0
b dvþ

Z
_QQ0
c dv; ð2Þ

where nðD; x; tÞ ¼
R
pdv. nðD;x; tÞdDdx denotes the probable number of particles with size in the

range dD about D, in the spatial range dx about x at time t, �vv is the mean velocity of all particles
of size D at a location x at time t. Eq. (2) is usually expressed as

on
ot

þrx � ð�vvnÞ ¼ � o

oD
ðRnÞ þ _QQb þ _QQc; ð3Þ

with _QQb ¼
R

_QQ0
b dv and

_QQc ¼
R

_QQ0
c dv. In the absence of evaporation or dissolution, this becomes

on
ot

þrx � ð�vvnÞ ¼ _QQb þ _QQc: ð4Þ

To close the problem, one needs reliable models for _QQb and _QQc. Over the years, a considerable
effort has been devoted to their modeling. In the turbine agitator experiments widely used in
chemical engineering applications, n and �vv are assumed to be uniform throughout the vessel, and
Eq. (4) simplifies to

onðD; tÞ
ot

¼ _QQbðDÞ þ _QQcðDÞ: ð5Þ

In any other experimental conditions, including turbulent jet experiments, the contribution of the
convective term, rx � ð�vvnÞ, must be retained (see Mart�ıınez-Baz�aan et al., 1999a,b). _QQb is usually
modeled as

_QQbðDÞ ¼
Z 1

D
mðD0Þf ðD;D0ÞgðD0ÞnðD0; tÞdD0 � gðDÞnðD; tÞ: ð6Þ

where gðDÞ is the break up frequency of particles of size D, mðD0Þ is the mean number of particles
resulting from the break up of a mother particle of size D0, and f ðD;D0Þ is the size distribution of
daughter particles formed from the breakage of a mother particle of size D0. The first term on the
right-hand side of Eq. (6) accounts for the rate of formation of particles of size D from the break-
up of particles larger than D. The second term accounts from the rate of break-up of particles of
diameter D. Similarly, _QQc is commonly modeled as
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_QQc ¼
Z V

0

kðV � V1; V1ÞhðV � V1; V1ÞnðV � V1; tÞnðV1; tÞdV1

� nðV ; tÞ
Z 1

0

kðV ; V1ÞhðV ; V1ÞnðV1; tÞdV1; ð7Þ

where hðV � V1; V1Þ is the collision frequency between two particles of volume V � V1 and V1,
respectively, and kðV � V1; V1Þ is their collision efficiency. The terms on the right-hand side of Eq.
(7) account for the formation and loss of particles of volume V due to coalescence, respectively.
Combining Eqs. (5)–(7), the population balance equation is written as

onðD; tÞ
ot

¼
Z 1

D
mðD0Þf ðD;D0ÞgðD0ÞnðD0; tÞdD0 � gðDÞnðD; tÞ

þ
Z V

0

kðV � V1; V1ÞhðV � V1; V1ÞnðV � V1; tÞnðV1; tÞdV1

� nðV ; tÞ
Z 1

0

kðV ; V1ÞhðV ; V1ÞnðV1; tÞdV1: ð8Þ

The rate of change of the number density of particles, onðD; tÞ=ot, can be expressed as a Birth rate
and a Death rate of particles

onðD; tÞ
ot

¼ BiðD; tÞ � DeðD; tÞ; ð9Þ

where the Birth rate is

BiðD; tÞ ¼
Z 1

D
mðD0Þf ðD;D0ÞgðD0ÞnðD0; tÞdD0

þ
Z V

0

kðV � V1; V1ÞhðV � V1; V1ÞnðV � V1; tÞnðV1; tÞdV1 ð10Þ

and the Death rate is,

DeðD; tÞ ¼ gðDÞnðD; tÞ þ nðV ; tÞ
Z 1

0

kðV ; V1ÞhðV ; V1ÞnðV1; tÞdV1: ð11Þ

Various models have been used to determine gðDÞ and f ðD;D0Þ in the break-up problem, and
hðV ; V1Þ and kðV ; V1Þ in the coalescence problem. We will focus our attention on the break-up, or
fragmentation problem, and restrict our discussion to models for gðDÞ and f ðD;D0Þ. A review of
models for the closure parameters in the coalescence problem can be found in Kolev (1993) and
elsewhere.

2. Turbulent particle break-up models

We consider systems in which the dispersed and continuous phases travel at the same mean
velocity. Thus, aerodynamic fragmentation due to a mean velocity difference between the phases
does not occur. Furthermore, we limit our discussion to systems in which the carrier phase
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turbulence can be regarded as locally homogeneous and isotropic. A review of aerodynamic
break-up can be found in Kolev (1993) and in Lasheras and Hopfinger (2000). In the following,
we present a comparative analysis of some of the more commonly used turbulent fragmentation
models.

2.1. Models for the particle break-up frequency, gðDÞ

Coulaloglou and Tavlarides (1977) defined the break-up frequency of a particle of size D as

gðDÞ ¼ 1

break-up time

� �
fraction of

drops breaking

� �
¼ 1

tb

DNðDÞ
NðDÞ ; ð12Þ

where NðDÞ is the total number of particles of size D. They modeled the fraction of drops breaking
as

DNðDÞ
NðDÞ ¼ exp

�
� Ec

E

�
; ð13Þ

with Ec ¼ c1rD2 being the surface energy, E ¼ c2qD3Du2ðDÞ a mean turbulent kinetic energy, and
Du2ðDÞ the mean squared value of the velocity fluctuations between two points separated by a
distance D. If one is dealing with homogeneous and isotropic turbulence, and if D is within the
inertial subrange, this term can be written as (Batchelor, 1956)

Du2ðDÞ ¼ j uðxþ D; tÞ � uðx; tÞ j2 ¼ c3�2=3D2=3: ð14Þ

Coulaloglou and Tavlarides assumed that the break-up time is given by the turbulent (eddy)
turnover time,

tb / D2=3��1=3: ð15Þ

Substituting Eqs. (13)–(15) into Eq. (12) gives 1

gcðDÞ ¼ Cc1D�2=3�1=3 exp

�
� Cc2r

q�2=3D5=3

�
; ð16Þ

where Cc1 and Cc2 are two constants to be found experimentally.
Konno et al. (1980) used the basic formulation of Coulaloglou and Tavlarides to determine the

particle break-up frequency,

gðDÞ ¼ Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2ðDÞ

q
D

Z 1

uc

P ðuðDÞÞduðDÞ: ð17Þ

However, Konno et al. represented the probability density distribution of relative velocity uðDÞ by
a Maxwell distribution

1 Although Coulaloglou and Tavlarides reported a dependence of gðDÞ on the disperse phase density, qd, the authors
of the current paper think that the dependence should be on the continuous phase density, q.
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PðuðDÞÞ ¼ 4p 3

2pDu2ðDÞ

 !3=2
u2ðDÞ exp

 
� 3
2

u2ðDÞ
Du2ðDÞ

!
; ð18Þ

resulting in a break-up frequency

gkðDÞ ¼ Ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2ðDÞ

q
D

Z 1

u�
3

ffiffiffi
6

p

r
x2 exp

�
� 3x

2

2

�
dx; ð19Þ

where the lower limit of integration is u� ¼ uc=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Du2ðDÞ

q
and uc is a critical velocity.

Following arguments from the kinetic theory of gases, Prince and Blanch (1990) postulated in
their model that particle break-up is the result of collisions between particles and turbulent eddies.
Their break-up frequency, therefore, is given by a collision rate multiplied by a break-up effi-
ciency, gðDÞ ¼ hDeF ðuÞ. They defined the collision rate as

hDe ¼ neSDeðDu2tD þ Du2teÞ
1=2; ð20Þ

where ne is the concentration of eddies in the size range of interest, Du2tD and Du2te are the average
turbulent velocity of particles and eddies, respectively, and SDe is the collision cross-sectional area
between particles of radius D=2 and eddies of size re ¼ p=k, given by

SDe ¼
p
4
ðD=2þ reÞ2: ð21Þ

The number density of eddies within a given size range is obtained by integrating the energy
spectrum,

dneðkÞ
dk

¼ 0:1k2: ð22Þ

Prince and Blanch point out that Eq. (22) gives an infinite number of eddies as the wave number k
goes to infinity (small-size eddies). To avoid this problem, they arbitrarily chose a minimum eddy
size equal to 20% of the particle diameter, arguing that eddies with a characteristic length equal to
20% of the drop diameter contain only 0.5% of the kinetic energy associated with an eddy of the
size of the particle (this point will be further discussed later on). Prince and Blanch defined a
break-up efficiency equal to that given by Coulaloglou and Tavlarides (1977),

F ðuÞ ¼ exp
 
� u2cD

Du2te

!
; ð23Þ

where 2

ucD ¼ 1:52 r
qD

� �1=2
: ð24Þ

The break-up frequency is then given by

2 Note that, in Eq. (29), in Prince and Blanch (1990) the constant has been miscalculated and the fluid density is

missing.
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gpðDiÞ ¼
X
e

neSDeðDu2tD þ Du2teÞ
1=2
exp

 
� u2cD

Du2te

!
; ð25Þ

with

ffiffiffiffiffiffiffiffi
Du2t

q
¼ 1:4ð�DÞ1=3. In integral form, the break-up frequency can be written as

gpðDÞ ¼
Z 10p=D

0

0:14p
16

D
�

þ 2p
k

�2
D2=3
 

þ 2p
k

� �2=3!1=2
�1=3


 exp
"
� 1:18

ð2pÞ2=3
rk2=3

qD�2=3

#
k2 dk: ð26Þ

Prince and Blanch did not define the lower limit of integration in Eq. (26), and arbitrarily took
kmax ¼ 2p=0:2D to be the maximum wave number. Although they claimed that eddies with lengths
less than 20% of the particle diameter do not have enough energy to break up the particle, one can
show that their model is very sensitive to the upper limit of integration, and therefore, it cannot be
chosen arbitrarily. In Fig. 1, we show the break-up frequency obtained using the Prince and
Blanch model for different values of the upper limit of integration. We varied the maximum wave
number from that corresponding to 20% of the particle diameter (kmax ¼ 10p=D) to that corre-
sponding to 5% of the particle diameter (kmax ¼ 40p=D). In addition, we have also shown the
break-up frequency obtained by integrating Eq. (26) to the maximum wave number, corre-
sponding to the Kolmogorov scale, defined as kg ¼ 0:5�1=4=m3=4. Contrary to their assumptions,
Fig. 1 shows that the break-up frequency given by the Prince and Blanch model is, in fact, highly
dependent on the limits of integration, and therefore, they must be clearly specified.
All of the above-described models are functions of empirically determined constants. Figs. 2(a)

and (b) show the diameter dependence of the break-up frequency, calculated using the Coulal-
oglou and Tavlarides, Konno et al., and Prince and Blanch models for the cases of � ¼ 1 m2=s3
and � ¼ 1000 m2=s3, respectively. To compare the different models on one plot, we have nor-
malized the break-up frequency determined from each model by its maximum value. The models
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Fig. 1. Break-up frequency. Prince and Blanch (1990) model. r ¼ 0:072 N=m�1
, q ¼ 1000 kg=m3, � ¼ 1 m2=s3.
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proposed by Coulaloglou and Tavlarides and Konno et al. show a maximum in the break-up
frequency as the drop diameter increases. This fact is not as evident in the model proposed by
Prince and Blanch for low values of �, in which case, it seems that the break-up frequency in-
creases monotonically with the drop diameter. On the other hand, Fig. 2(b) shows that, at higher
values of �, the Prince and Blanch model also goes through a maximum as the drop diameter
increases. In these plots, the upper limit of integration was taken to be equal to the wave number
associated with an eddy of length equal to 20% of the drop diameter.
Tsouris and Tavlarides (1994) criticized their original model because it predicted a critical

diameter whose break-up frequency is maximized. As shown in Fig. 2(b), the Prince and Blanch
and Konno models exhibit this same behavior. Tsouris and Tavlarides considered this non-
monotonic behavior to be erroneous, and proposed a new model which predicted a monotonic
increase of the break-up frequency with the drop diameter. Their new model was based on a
particle-eddy collision model slightly different from that proposed by Prince and Blanch,

gtðDÞ ¼ Ct1

Z
ne

SDe Du2te



þ Du2tD
�1=2
exp

�
� Ct2Ec

e

�
dne; ð27Þ

where SDe ¼ pðDe þ DÞ2 is the cross-section area, and Du2tD ¼ 1:07�2=3D2=3 and Du2te ¼ 8:2�2=3k�2=3
are the average turbulent velocities of a particle of diameter D and a turbulent eddy of length
De ¼ 2=k, respectively. The average energy of an eddy of size De was defined as

e ¼ 1
2

qpD3e
6
8:2�2=3

De
2

� �2=3
¼ 0:43qpD11=3e �2=3: ð28Þ

The main difference between the Tsouris and Tavlarides model and the Prince and Blanch model
is the value of the activation energy used. Tsouris and Tavlarides proposed an expression for the
minimum energy needed for break-up to occur given by the average excess of surface energy
needed to form a pair made up of a small particle and a large one as compared to forming two
particles of the same volume. Stated mathematically, this gives
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Fig. 2. Comparison of various break-up frequency models. (a) r ¼ 0:072 N=m�1
, q ¼ 1000 kg=m3, � ¼ 1 m2=s3. (b)

r ¼ 0:072 N=m�1
, q ¼ 1000 kg=m3, � ¼ 1000 m2=s3.
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Ec ¼
pr
2
2

D
21=3

� �2"
þ D2max þ D2min � 2D2

#
: ð29Þ

Here, Dmin is a minimum drop size and Dmax ¼ D3 � D3min
� �1=3

is the diameter of a particle with
complementary volume. Their expression for the break-up frequency is

gtðDÞ ¼ Ct1F ð/Þ�1=3
Z 2=Dmin;e

2=D
k2 D
�

þ 2
k

�2
1:07D2=3
�

þ 8:2
k2=3

�1=2


 exp
"
� Ct2pr
2

½2 D
21=3

� �2 þ D2max þ D2min � 2D2�
0:43qpð2=kÞ11=3�2=3

#
dk; ð30Þ

where F ð/Þ is a turbulence damping factor due to the presence of the disperse phase, / is the
volume fraction of the disperse phase, and Dmin;e is an arbitrarily defined minimum eddy size.
Arguing that eddy sizes larger than the particle diameter transport the particle but do not affect its
break-up and that eddies of size smaller than Dmin;e do not have enough energy to break the
particle, Tsouris and Tavlarides proposed to integrate Eq. (30) from wave number kmin ¼ 2=D (of
the order of the particle size) to kmax ¼ 2=Dmin;e. Based on their arguments, the break-up frequency
of a particle whose diameter is within the inertial subrange (Le > D > g) should be independent of
the limits of integration as long as 2=Le < kmin < 2=D and 2=g > kmax > 2=Dmin;e, where Le is the
integral scale and g is the Kolmogorov scale. Surprisingly, this argument does not hold true in Eq.
(30). Notice that if the lower limit of integration is taken as 2=Le instead of 2=D, the break-up
frequency of small particles is considerably higher. In this case, the model gives a decreasing
dependence of the break-up frequency with the particle diameter.
Fig. 3 shows the dependence of the break-up frequency on the particle diameter for different

values of �. This figure, similar to Fig. 1(a) in Tsouris and Tavlarides (1994), was calculated by
integrating Eq. (30) from kmin ¼ 2=D to kmax ¼ 2=Dmin;e. The break-up frequency obtained in-
creases continuously with the particle diameter. The effect of the chosen lower limit of integration
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Fig. 3. Break-up frequency. Tsouris and Tavlarides (1994) model. r ¼ 0:072 N=m�1
, q ¼ 1000 kg=m3.
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on the break-up frequency given by the model is shown in Fig. 4. Note that when kmin is changed
from kmin ¼ 2=D to kmin ¼ 1=D the break-up frequency of particles of 1 mm diameter changes
from 0.2 s�1 to 32 s�1. Also note that when the lower limit is chosen to be kmin ¼ 2=Le with Le ¼ 1
mm (the maximum drop size), the break-up frequency decreases with the particle diameter. These
results clearly disagree with the premise that eddies larger than the particle diameter do not
contribute to its break-up, as assumed by the model.
Luo and Svendsen (1996) also proposed a kinetic theory-type model, where the break-up fre-

quency is calculated as a collision frequency between eddies and particles multiplied by a collision
efficiency, gðDÞ ¼ hDeF ðDÞ. In their case, the collision frequency of eddies of size between De and
De þ dDe with a particle of size D is written as

hDeðDÞ ¼
p
4
ðDþ DeÞ2Du2De

1=2 dne
dDe

; ð31Þ

with Du2De ¼ b1=2ð�DeÞ1=3, and b ¼ 2:045. The number density of eddies, ne, was defined as

dne
dDe

¼ 0:822ð1� /Þ
D4e

; ð32Þ

where / is the volume fraction of dispersed phase. In dimensionless variables,

hDeðnÞ ¼ 0:923ð1� /Þð�DÞ1=3 ð1þ nÞ2

D2n11=3
; ð33Þ

where n ¼ De=D. For the break-up efficiency, they proposed a function given by

F ðDÞ ¼ exp
 

� EcðDÞ
�eeðDeÞ

!
; ð34Þ

where �eeðDeÞ is the mean kinetic energy of an eddy of size De,
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�eeðDeÞ ¼ q
p
6
D3e

Du2De
2

¼ pqb
12

D11=3e �2=3 ¼ pqb
12

n11=3D3ðD�Þ2=3; ð35Þ

and EcðDÞ is the increase in surface energy when a particle of diameter D is broken into two
particles of size D1 and ðD3 � D31Þ

1=3
, respectively,

EcðDÞ ¼ pr D21



þ ðD3 � D31Þ
2=3 � D2

�
¼ prD2 f 2=3V



þ ð1� fV Þ2=3 � 1

�
¼ CfprD2; ð36Þ

with fV ¼ D31=D
3 and 06Cf ¼ f 2=3V þ ð1� fV Þ2=3 � 16 0:26 depending on the daughter drop di-

ameter. Combining Eqs. (31), (35) and (36), the break-up frequency of a particle of size D that
breaks into particles of sizes D1 and ðD3 � D31Þ

1=3
is given by

glðD;D1Þ ¼ 0:923ð1� /Þ �

D2


 �1=3 Z 1

nmin

ð1þ nÞ2

n11=3
exp

�
� 12Cfr

bq�2=3D5=3n11=3

�
dn; ð37Þ

where nmin ¼ Dmin;e=D, Dmin;e=g � 11:4� 31:4 and g is the Kolmogorov microscale. The global
break-up frequency of particles of size D is calculated as

glðDÞ ¼
1

2

Z 1

0

glðD;D1ÞdfV : ð38Þ

Luo and Svendsen argued that their model does not include any unknown, empirical parameters;
however, their model does depend on the lower and upper limits of integration in Eq. (37), nmin
and 1, respectively. The selection of 1 as the upper limit indicates that Eq. (37) is integrated from
the viscous scale to a length scale equal to the diameter of the particle. This model, like the
previous models, is very sensitive to the upper limit of integration. The values for the break-up
frequency obtained from Eq. (37) is integrated over the entire inertial subrange compared to when
it is integrated only up to n ¼ 1. This fact is apparent in Fig. 5 where we have calculated the break-
up frequency of air bubbles in water for a large range of bubble diameters (comparable to Fig. 5 in
Luo and Svendsen, 1996) for two different cases. The first case was obtained integrating Eq. (37)
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Fig. 5. Break-up frequency. Luo and Svendsen (1996) model. � ¼ 1 m2=s3, r ¼ 0:072 N=m�1
, q ¼ 1000 kg=m3.
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up to a length scale equal to the diameter of the particle, n ¼ 1. In the second case, the upper limit
of the integral was extended up to a scale that was twice the size of the particle, n ¼ 2.
In an attempt to overcome the inconsistencies found in the above-described turbulent break-up

models, Mart�ıınez-Baz�aan et al. (1999a) proposed a model based on purely kinematic ideas. Al-
though their model was developed for the particular case of the break-up of air bubbles immersed
in a turbulent water flow, it has been extended to the more general case of liquid–liquid systems
(Eastwood et al., 2000). The basic premise of this model is that for a particle to break, its surface
has to be deformed, and further, that this deformation energy must be provided by the turbulent
stresses produced by the surrounding fluid.
The minimum energy needed to deform a particle of size D is its surface energy,

EsðDÞ ¼ prD2: ð39Þ
If viscous forces can be neglected in comparison with surface tension forces, the confinement
stress is (Es/volume)

ssðDÞ ¼
6Es
pD3

¼ 6 r
D
: ð40Þ

If the size of these particles is within the inertial subrange, the average deformation stress, which
results from velocity fluctuations existing in the liquid between two points separated by a distance
D, can be estimated as

stðDÞ ¼
1

2
qMu2ðDÞ; ð41Þ

where Mu2ðDÞ is the mean value of the velocity fluctuations between two points separated by a
characteristic distance D, and q is the density of the continuous phase.
When the turbulent stresses are equal to the confining stresses, stðDÞ ¼ ssðDÞ, a critical diam-

eter, Dc, is defined such that particles with D < Dc are stable and will never break (Kolmogorov,
1949; Hinze, 1955). A particle of size D > Dc has a surface energy smaller than the deformation
energy (ssðDÞ < stðDÞ), and thus, the particle deforms and eventually breaks up in a time tb. In a
homogeneous and isotropic turbulent flow, one can apply Kolmogorov’s universal theory to
estimate Mu2ðDÞ as

Mu2ðDÞ ¼ juðxþ D; tÞ � uðx; tÞj2 ¼ bð�DÞ2=3; ð42Þ
when D is within the inertial subrange, Le > D > g. Eq. (42) is obtained by integrating from the
Kolmogorov scale, g, to the integral scale, Le, as shown by Batchelor (Batchelor, 1956).
The critical diameter, Dc ¼ ð12r=ðbqÞÞ3=5��2=5, is defined by the crossing point of the two curves

shown in Fig. 6. Similar to any mechanical process (Newton’s Law), Mart�ıınez-Baz�aan et al.
postulate that the acceleration of the particle interface during deformation is proportional to the
difference between the deformation and confinement forces acting on it. In other words, the
probability of breaking a particle of size D in time tb increases as the difference between
the pressure produced by the turbulent fluctuations on the surface of the particle, 1

2
qMu2ðDÞ, and

the restoring pressures caused by surface tension, 6r=D, increases. On the other hand, the break-
up frequency should decrease to a zero limit value as this difference of pressures vanishes. Thus,
the particle break-up time can be estimated as
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tb /
D
ub

¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu2ðDÞ � 12 r

qD

q ; ð43Þ

where ub is the characteristic velocity of the particle break-up process. The break-up frequency
gð�;DÞ is given by

gð�;DÞ ¼ 1
tb
¼ Kg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mu2ðDÞ � 12 r

qD

q
D

¼ Kg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð�DÞ2=3 � 12 r

qD

q
D

; ð44Þ

where the constant b ¼ 8:2 was given by Batchelor (1956), and Kg ¼ 0:25 was found experi-
mentally for the case of air bubbles in water.
The dependence of the break-up frequency, given by Eq. (44), on the particle diameter is shown

in Fig. 7. The break-up frequency is zero for particles of size D6Dc, and it increases rapidly for
particles larger than the critical diameter, D > Dc. It is important to note that after reaching a
maximum at Dgmax ¼ ð9=4Þ3=5Dc � 1:63Dc, the break-up frequency decreases monotonically with
the particle size. The maximum break-up frequency, achieved at Dgmax , is given by

gmaxð�Þ ¼ 0:538Kgb
1=2�3=5

12r
qb

� ��2=5

: ð45Þ

In summary, break-up frequency models based on arguments similar to the kinetic theory of gases
assume that turbulence is manifested as an array of eddies with well-defined sizes and number
densities. They require the definition of a collision cross-section and an eddy arrival frequency
based on this assumption. They also require the specification of closure parameters (e.g. limits of
integration) that can significantly alter their behavior. Some of the models for gðDÞ discussed
above are compared with each other and with experimental data obtained from the break-up of
air bubbles immersed in a high Reynolds number, submerged water jet in Section 3 (for further
comparisons, see Mart�ıınez-Baz�aan et al. (1999a,b)).
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2.2. Models for the daughter particle size distribution, f ðD;D0Þ

As was shown in Eq. (6), a complete particle break-up model must include an expression for the
size distribution of the daughter particles resulting from break-up of a mother particle of size D0,
f ðD;D0Þ, in addition to a model for gðDÞ. Historically, there have been three predominant ap-
proaches to the formulation of this term: statistical models, phenomenological models based on
the change in surface energy of a breaking particle, and hybrid models which are based on a
combination of both. Surface energy models have taken two forms: those based on the probability
of sufficiently energetic eddy collisions, and those based on a balance of stresses existing at the
particle surface. In all cases, both the shape of the daughter probability density function (pdf) and
the number of daughter particles formed by a break-up event, mðD0Þ, must be determined. The
latter is done by either assuming a given number of daughter particles a priori, or by deriving an
empirical relation for the number of daughter particles from available experimental data. A wide
variety of approaches have been taken to determine the shape of the daughter particle pdf. Some
of the more widely used models are discussed below.

2.2.1. Statistical models
One of the earliest statistical models for the daughter particle size distribution is that proposed

by Valentas et al. (1966). Valentas considers two possible daughter particle pdfs. The first is a
discrete model, in which a parent particle of diameter D0 is assumed to split into equally-sized
daughter particles of diameter D0=m1=3, where m is the number of daughter particles formed. For
binary break-up (m ¼ 2), this means that

f ðD;D0Þ ¼ d D
�

� D0
21=3

�
: ð46Þ

The use of a d-function pdf suggests that particle break-up is deterministic. Binary break-up into
two equally sized daughter particles implies that at steady-state, no particles smaller than
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Fig. 7. Evolution of the particle break-up frequency with the particle diameter.
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Dmax=21=3 exist, where Dmax is the largest stable drop diameter (Kolmogorov, 1949; Hinze, 1955).
This result has never been confirmed by experiments (Nambiar et al., 1992).
The second model proposed by Valentas et al. is a logical, continuous analog of the discrete

daughter particle pdf. In this case, it is assumed that the daughter particle sizes, for a parent
particle of diameter D0, are normally distributed about a mean value, �DD ¼ D0=mðD0Þ1=3. Thus,
f ðD;D0Þ is given by

f ðD;D0Þ ¼
1

r
ffiffiffiffiffiffi
2p

p exp

"
� ðD� �DDÞ2

2r2

#
: ð47Þ

Note that the normal distribution extends from �1 to þ1. If D must lie within a specified
tolerance, c, of �DD, such that �DD� c6D6 �DDþ c, then the variance, r, must be defined as

r ¼ D0
cmðD0Þ1=3

; ð48Þ

where m is a function of D0. It represents the average number of daughter particles formed by the
break-up of a mother particle of a given size. In order to use this model, m must be found from
experimental data. Since m is dependent on the flow conditions, it will vary from system to system.
Valentas found that the results of his model were strongly dependent on the choice of m.
Coulaloglou and Tavlarides (1977) adopted the Valentas model in their work. They assumed

binary break-up ðm ¼ 2Þ and fixed r such that greater than 99.6% of the particles formed were
within the volume range 0 to pD30=6 ðc ¼ 3Þ. This gives the daughter particle size distribution as

f ðD3;D30Þ ¼
2:4

D30
exp

"
� 4:5ð2D

3 � D30Þ
2

D60

#
: ð49Þ

Other authors, including Chatzi et al. (1989) and Chatzi and Kiparissides (1992) have employed
the truncated normal function as a daughter particle size distribution. This is a statistical model,
applying on average to a large population of particles. If it is argued that the break-up of a
collection of particles is a composite of several independent, random events, then the normal
distribution can be arrived at statistically; however, there is no physical justification for this
model. The properties of the turbulent flow, and of the dispersed phase, enter into the model only
through the choice of m. As the system and the level of underlying turbulence vary, the value of m
will vary. The appropriate value of m can only be determined if experimental data is available.
Hsia and Tavlarides (1983) found that the truncated normal model proposed by Coulaloglou

and Tavlarides (1977) was unable to predict the results obtained by Ross (1971), Verhoff et al.
(1977), and Ross et al. (1978). Consequently, they modified the earlier work, assuming binary
break-up and a beta distribution, rather than the truncated normal distribution. The particular
beta distribution selected by Hsia and Tavlarides for their daughter particle pdf is given by

f ðD3;D30Þ ¼
30

D30

D3

D30

� �2
1

�
� D3

D30

�2
: ð50Þ

In a later work, Lee et al. (1987) assumed that the daughter particle pdf was a beta distribution of
the form
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f ðv; v0Þ ¼ Cðaþ bÞ
CðaÞCðbÞv0

v
v0


 �a�1
1
h

� v
v0

ib�1
; ð51Þ

where v0 is the volume of the mother particle and f ðv; v0Þdv represents the fractional number of
particles with volumes between v and vþ dv formed when a particle of volume v0 breaks. a and b
are empirically derived constants.
Lee et al. determined the values of a and b which best fit their experimental data (bubble break-

up in an airlift column) by first assuming binary break-up, ðmðv0Þ ¼ 2Þ, and then assuming break-
up of the form

mðv0Þ ¼ 2þ cðv0Þn
0
; ð52Þ

where c and n0 are additional, empirically derived constants. For binary break-up ðc ¼ 0Þ, the best
value for both a and b was 2.0. The authors emphasize that the average number of particles
formed per breakage event has a strong influence on the steady-state particle size distribution, and
further, that their data was best-fit using the ‘‘multibreakage’’ (non-binary) model. They obtained
the best fit to their data with c ¼ 10:0 and n0 ¼ 0:5. mðv0Þ is plotted in Fig. 8 using these values.
The authors state that bubble diameters in their system range from 1 to 8 mm. Notice that mðv0Þ
does not vary significantly from the binary breakage scenario ðmðv0Þ ¼ 2:0Þ over this entire range.
It is likely that Lee et al. obtain a better fit using the multibreakage model because, in this case,
they also change additional parameters in their break-up frequency model.
The b-distribution is a two-parameter model that can assume a variety of shapes. Investigators

have been able to fit a wider range of data with it than with the single parameter, truncated
normal distribution. Like the truncated normal distribution, however, the proper selection of the
adjustable parameters relies heavily on available experimental data. The values chosen for these
parameters change both from apparatus-to-apparatus and with varying flow conditions. The
truncated normal distribution employed by Coulaloglou and Tavlarides and the beta distributions
used by Hsia and Tavlarides and by Lee et al. in their binary break-up model are shown in Fig. 9.
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Fig. 8. Evolution of mðv0Þ with mother particle diameter for the Lee et al. (1987) model.

J.C. Lasheras et al. / International Journal of Multiphase Flow 28 (2002) 247–278 261



Collins and Knudsen (1970) investigated particle size distributions resulting from the break-up
of an immiscible liquid in turbulent pipe flow. They compared a variety of daughter particle size
distribution models, including the truncated normal distribution, with their experimental data.
The best agreement was obtained by assuming that when a mother particle breaks, two daughter
particles with uniformly distributed volume ratios are formed, along with a third, very small
satellite particle. A uniform distribution with binary break-up was assumed by Randolph (1969)
and also by Narsimhan et al. (1979).
Prince and Blanch (1990) derived a phenomenological model for particle break-up frequency

based on surface energy considerations; however, they did not derive a companion model for the
daughter particle size pdf. Rather, they assumed that a mother particle breaks into two daughter
particles of random size. In this case, there is an equal probability for forming a daughter particle
of any size. This gives a uniform distribution with binary break-up. There is no physical justifi-
cation for selecting a uniform distribution model; however, it could be argued that at high levels
of turbulence, an amount of energy sufficient to cause particle break-up might exist over a wide
range of scales. This would cause a physically based daughter particle distribution to flatten-out
at very high dissipation rates. Since turbulent fluctuations are not uniform over all scales, the
uniform distribution remains an idealization, even at high dissipation rates of turbulent kinetic
energy.
Hesketh et al. (1991) performed experiments to investigate particle break-up in turbulent pipe

flow. They compared several different daughter particle size distributions, including: equal-volume
breakage (e.g. the d-function model proposed by Valentas), random breakage (e.g. Prince and
Blanch), attrition, and what the authors refer to as 1=X -type breakage. These models are shown in
Fig. 10. bðD30;D3Þ is the probability density function for the formation of a daughter particle of
diameter D from a mother particle of diameter D0, referred to in the current paper as f ðD;D0Þ. fV
is the volume fraction, D3=D30. These authors found that their experimental data was best fit by
employing a model that predicted daughter particle sizes somewhere between those predicted by
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Fig. 9. Comparison of the non-dimensional daughter particle pdf models, f �ðD3=D30Þ ¼ D30f ðD3;D30Þ used by Coulal-
oglou and Tavlarides (1977) [C&T], Hsia and Tavlarides (1983) [H&T], and Lee et al. (1987) [L,E&G]. For L,E,&G, the

curve shown is for binary breakage with a ¼ b ¼ 2:0. D0 ¼ 3 mm for each model.
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random and attrition breakage. They found that random breakage over-predicted the formation
of daughters with fV near 0.5 and therefore over-estimated the Sauter mean diameter, D32, of the
resulting particle distribution. On the other hand, attrition breakage over-predicted the formation
of very small daughter particles and under-estimated D32. The 1=X -type distribution used by these
authors was selected based on a best-fit of the asymptotic value of D32 for their system, and has
the following form:

bðD30;D3Þ ¼
1

ððD=D0Þ3 þ BÞ

"
þ 1

ð1� ðD=D0Þ3 þ BÞ
� 2

ðBþ 0:5Þ

#
I
D30

; ð53Þ

where B is an empirically determined constant and I is a constant required for normalization. This
model also requires an empirically determined estimate for the diameter, Dmin, of the smallest
daughter particle formed. It should be noted that even when using the best fit obtained with the
distribution given in Eq. (53), this model under-predicted the number of daughter particles seen in
Hesketh’s experiments with 0:2256 fV 6 0:5. As with the other statistical models, the values of the
empirical constants in this model will vary with different flow conditions, with initial particle size,
and from apparatus-to-apparatus. In order to use the model, experimental data for the given
conditions and apparatus must be available. This model has no physical justification; however, it
has been used as a source of comparison for many of the surface-energy models described below.
More recent, purely statistical models have been proposed by Longuet-Higgins (1992) and

Novikov and Dommermuth (1997). Longuet-Higgins simulated the break-up process by viewing
it as a sequence of random divisions of a unit cube by a number of planes oriented parallel to the
faces of the cube. He studied the size-pdf resulting from different numbers of cuts performed in
one, two, and three dimensions. An infinite number of distributions are possible depending on
the number of dimensions and on the number of cuts made. Longuet-Higgins showed that
by adjusting the number of cuts performed in each dimension the model could match various

Fig. 10. (From Hesketh et al., 1991). Various statistical daughter particle pdf models. bðD30;D3Þ is the dimensional
probability density function for the formation of a daughter particle of diameter D from a mother particle of diameter

D0. fV is the volume fraction of the daughter particle.
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experimental results. This model has the same shortcomings as those discussed above: it lacks
physical justification and relies entirely on empirical data.

2.2.2. Hybrid models
Konno et al. (1980) proposed a statistical model that includes the distribution of energy among

turbulent eddies of different scales. They assume that each mother particle, of volume v0, is di-
vided into J equally-sized elements, such that J ¼ v0=ve, where ve is the volume of a single element.
They also assume that the number of daughter particles formed is equal to m for each breakage
event and that the volume of each daughter particle formed is an integral multiple of ve. Each
daughter particle, specified by the index i, has a dimensionless volume given by Ki ¼ vi=ve. Since
each breakage results in m daughter particles, then, assuming an incompressible fluid, conser-
vation of mass requires that all possible combinations of daughter particles satisfy the relationship

K1 þ K2 þ K3 þ � � � þ Km ¼ J : ð54Þ

As J and m increase, the number of possible combinations of daughter particles increases rapidly
(for instance, for J ¼ 7 and m ¼ 3, the number of possible combinations is 15). Konno et al.
consider that the formation of daughter particles of given size results from interactions between
the mother particle and turbulent eddies of that same size. The probability of forming a daughter
particle of given size is then proportional to the kinetic energy contained in eddies of that length
scale. If these eddies are independent of one another, then the probability of obtaining a com-
bination of Ki is given by their product

P / EðK1ÞEðK2ÞEðK3Þ � � �EðKmÞ; ð55Þ

where EðKiÞ is estimated from the following Heisenberg energy spectrum:

EðKiÞ ¼
8

9a

� �2=3
�2=3

p
6veKi

� ��5=3

1

"
þ 8v

3
e p=6veKið Þ4

3a2

#�4=3
: ð56Þ

where a ¼ 0:51.
In order to obtain a continuous distribution of daughter particles, J must be large. In their

analysis, the authors set J ¼ 100 and found the best fit with their experimental data by assuming
that m ¼ 3. With these values of J and m, Konno et al. (1983) show that the above model is well-
approximated by the following beta distribution:

D0f ðD;D0Þ ¼ f �ðD=D0Þ ¼
Cð12Þ

Cð3ÞCð9Þ
D
D0

� �8
1

�
� D
D0

�2
: ð57Þ

This result is plotted in Fig. 11. Notice that this model predicts a high probability for the for-
mation of equally sized daughter particles and a low probability for the formation of a very small
daughter particle and its complement. Although the Heisenberg energy spectrum depends on the
dissipation rate of turbulent kinetic energy, Konno’s model is well-approximated by Eq. (57)
which contains no dependence on the underlying turbulence. Also, as the size of the mother
particle, D0 is increased, the shape of f �ðD=D0Þ does not change. This behavior is contrary to
available experimental observations.
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2.2.3. Surface energy models based on eddy collisions
Ross and Curl (1973), Coulaloglou and Tavlarides (1977), Prince and Blanch (1990), and

others, have argued that particle break-up should be a function of the difference in surface energy
between a mother particle and the energy of a colliding eddy. Although these authors developed
models for the particle break-up frequency, they relied upon statistical models for the resulting
daughter particle size distribution. In the majority of cases, statistical models favor the formation
of equally sized daughter particles (this is not true for the uniform distribution). This is at odds
with the eddy collision-surface energy argument, however, since the energy required for collision-
induced breakage into two equally sized particles is greater than the energy required for break-up
into a small and a large particle.
Nambiar et al. (1992) developed a phenomenological model for the breakage rate of viscous

drops in stirred vessels. Their model differs from those listed in the previous paragraph in that in
addition to a model for the break-up frequency, they also derived an expression for the daughter
particle pdf. Nambiar et al. argue that particles break as a result of collisions with turbulent eddies
of appropriate size and with sufficient energy. They postulate the existence of a minimum and
maximum eddy size capable of particle breakage. The maximum eddy size capable of breaking a
mother particle is given by the diameter of the particle itself. The possibility of finding eddies of
length De smaller than a particle of diameter D that are capable of causing breakage is dependent
upon finding values of De6D that satisfy

2ffiffiffi
a

p arctan
1

2
ffiffiffi
a

p
� �

6
ReG
We

� �
D
DI

� ��1=3 De
D

� �2=3
; ð58Þ

where Re is the Reynolds number, defined as ND2Iq=ld, We is the Weber number, defined as
qN 2D3I=r, N is the rotational speed of the impeller, and DI is the impeller diameter. G is related to
the change in surface energy resulting from the formation of a daughter particle of volume v from
a mother particle of volume v0 and is given by
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Fig. 11. Dimensionless daughter particle probability function predicted by Konno et al. (1980), as approximated by
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G ¼ v0 � v
v0

� �2=3
þ v

v0


 �2=3,
21=3: ð59Þ

a is given by

a ¼ CðDe=DÞ2=3We
G

D
DI

� �5=3
� 1
4
: ð60Þ

The constant C relates the mean inertial stress, sT , to the size and speed of the impeller and is
determined from the relationship

�ssT ¼ CqN 2D4=3I D2=3e : ð61Þ
In this model, Dmin;e is found by solving Eq. (58) as a strict equality. Dmax is found by solving this
equality with De=D ¼ 1. Particles with diameters less than Dmax do not break. Particles with di-
ameters equal to Dmax undergo equal, binary breakage. The author argues that this is the case
since these drops can be broken by eddies of only one size: those with diameters equal to the drop
diameter. The symmetry of the problem predicates equal breakage. Particles larger than Dmax are
susceptible to asymmetric breakage. These particles have the following daughter particle size pdf:

f ðv; v0Þ ¼
4 sin j p�2/

3
jf ðDejDmin;e6De6DÞ
pDeD sin/

; ð62Þ

where v is the volume of the daughter particle, v0 is the volume of the mother particle, and
f ðDejDmin;e6De6DÞ is the conditional probability of finding an eddy of length De in the size
range between Dmin;e and D. / is determined from the equation

/ ¼ arccos 1
�

� 2v
v0

�
: ð63Þ

Nambiar’s daughter particle pdf is shown in Fig. 12. It has a V-shape and is symmetric about v0=2.
There is zero probability of equal breakage and in increasing probability of breaking off either

Fig. 12. (From Nambiar et al., 1992.) Dependence on the mother particle size for the dimensionless daughter particle

pdf predicted by Nambiar et al. (1992). Beta is given by v0 � f ðv; v0Þ in Eq. (62).
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very large or very small daughter particles. The pdf reaches a maximum at its tails, vminðv0Þ and
v0 � vminðv0Þ. The smallest daughter particle size, vminðv0Þ is determined by Dmin;eðD0Þ, where D0 is
the diameter corresponding to v0. The probability of breaking off a daughter particle smaller than
vminðv0Þ or larger than v0 � vminðv0Þ is zero. It is important to note that as the size of the mother
particle increases, this model approaches the uniform distribution in that its tails become less
pronounced. In other words, as v0 increases, the relative probability of creating particles of ap-
proximately equal size increases; however, the probability of creating daughter particles of exactly
the same size remains zero, unless the mother particle diameter is equal to Dmax. It is highly
unlikely that equal breakage never takes place for particles with sizes other than Dmax.
One of the most popular phenomenological models for the daughter particle pdf is that pro-

posed by Tsouris and Tavlarides (1994). Like Nambiar, their model assumes binary break-up
ðmðD0Þ ¼ 2Þ. The authors postulate that the formation of a daughter particle of size D1 is inversely
proportional to the energy required to split a mother particle of size D0 into a particle of size D1
and its complementary particle of size D2. This energy requirement is proportional to the excess
surface area generated by splitting the mother particle

eðD1Þ ¼ prD21 þ prD22 � prD20 ¼ prD20
D1
D0

� �22
4 þ 1

"
� D1

D0

� �3#2=3
� 1

3
5: ð64Þ

This expression is maximized when two daughter particles of equal size ðD1 ¼ D2 ¼ D0=21=3Þ are
formed, giving a maximum energy equal to

emax ¼ prD20½21=3 � 1�: ð65Þ

Eq. (64) is minimized when D1 ¼ 0, that is, when the mother particle does not break. In order to
allow particles to break, a minimum diameter, Dmin and its corresponding surface energy, emin ¼
prD2min should be specified. With these expressions for the maximum and minimum energies re-
quired to create daughter particles, the daughter particle size pdf is

f ðD1;D0Þ ¼
emin þ ½emax � eðD1Þ�R D0

Dmin
emin þ ½emax � eðD1Þ�dD1

: ð66Þ

This distribution has a U-shape, with a minimum probability for the formation of two equally
sized daughter particles and a maximum probability for the formation of a very large daughter
particle and its complement of size Dmin. A plot of this function is shown in Fig. 13. For this plot,
emin ¼ 0; however, the distribution function does not go to infinity at its tails. In fact, the pdf
approaches a constant value at each tail, suggesting that although the energy requirement for
stripping off successively smaller daughter particles decreases, the probability of this event
does not increase, but instead reaches a constant value. This result is contrary to the argument
that the daughter particle size distribution is linearly related to the energy required for the for-
mation of the daughter drops. Like Nambiar, this model predicts a zero probability for the
formation of daughter particles of equal size (when emin ¼ 0). It is highly unlikely that equally
sized daughter particles can be ruled out altogether. Furthermore, this model has no dependence
on either the dissipation rate of turbulent kinetic energy or on the initial particle size. This be-
havior does not match experimental observation.
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Luo and Svendsen (1996) derived an expression for the breakage rate of a particle of volume v
into daughter particles of size vfV and vð1� fV Þ using energy arguments similar to those employed
by Tsouris and Tavlarides. In this model, fV denotes the volume fraction D3=D30, where D is the
diameter of the daughter particle and D0 is the diameter of the mother particle. As in the Tsouris
and Tavlarides model, these authors assume binary break-up. The significant difference between
the Luo and Svendsen model and its predecessors is that it gives both a ‘‘partial’’ breakage rate,
that is, the breakage rate for a particle of size v splitting into a particle of size vfV and its com-
plement, and an overall breakage rate (the overall breakage rate is obtained by integrating the
partial breakage rate from zero to one and multiplying by 1=2). The previous surface energy
models provided only an overall breakage rate. The expression for the daughter particle size
distribution function is found by normalizing the partial breakage rate by the overall breakage
rate.
The Luo and Svendsen daughter particle size distribution is determined from the expression

f ðvfV ; vÞ ¼
2
R 1

nmin
ð1þ nÞ2n�11=3e�vc dn

v
R 1
0

R 1
nmin

ð1þ nÞ2n�11=3e�vc dndfV
; ð67Þ

where v ¼ pD30=6 is the volume of the mother particle, vfV ¼ pD31=6 is the volume of the resultant
daughter particle, n ¼ De=D is the size ratio between an eddy in the inertial subrange and the
particle, and vc is the critical dimensionless energy required for break-up

vc ¼
�eeiðdÞ
�eeðkÞ ¼ 12Cfr

bq�2=3D5=3n11=3
: ð68Þ

As written, this model has one free parameter: the lower limit of integration in Eq. (67) (see
Section 2 for a discussion of the sensitivity of this model to the upper limit of integration). This
parameter defines the ratio between the particle diameter and the smallest eddies in the inertial
subrange that can cause break-up. The minimum eddy size in the inertial subrange is taken to be
between 11.4 and 31.4 times the Kolmogorov length scale (Tennekes and Lumley, 1972).
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The behavior of the Luo and Svendsen model is shown in Figs. 14–16. In Fig. 14, the dissi-
pation rate of turbulent kinetic energy, �, is held fixed ð� ¼ 10 m2 s�3Þ and the evolution of the
model with increasing mother particle diameter can be seen. As the mother particle diameter is
increased, the probability of equal breakage increases and the pdfs begin to flatten out. In all
cases, however, the probability of breaking a mother particle into a very small particle and a
complementary large particle far exceeds the probability of equal breakage. Fig. 15 shows the
evolution of the model with dissipation rate for a fixed mother particle diameter. The pdfs flatten
out and the probability of equal breakage increases significantly with increasing dissipation rate.
Notice that the two curves representing � ¼ 100 m2 s�3 and � ¼ 1000 m2 s�3 are nearly identical,
but the curve for the higher dissipation rate lies slightly below that for the lower dissipation rate.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

D
0
=1 mm

D
0
=3 mm

D
0
=5 mm

D
0
=10 mm

f* (D
3
/D

0

3
)

D3/ D
0

3

ε=10 m2/ s3

Fig. 14. Evolution of the Luo and Svendsen (1996) model with mother particle diameter. � ¼ 10 m2=s3,
r ¼ 0:072 N=m, q ¼ 1000 kg=m3, nmin ¼ 21:4g=D0.

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1

ε=0.5 m2/ s3

ε=1 m2/ s3

ε=10 m2/ s3

ε=100 m2/ s3

ε=1000 m2/ s3

f* (D
3
/D

0

3
)

D3/ D
0

3

D
0
=3 mm

Fig. 15. Evolution of the Luo and Svendsen (1996) model with the dissipation rate of turbulent kinetic energy, �.
D0 ¼ 3 mm, r ¼ 0:072 N=m, q ¼ 1000 kg=m3, nmin ¼ 21:4g=D0.

J.C. Lasheras et al. / International Journal of Multiphase Flow 28 (2002) 247–278 269



This non-monotonic evolution with � does not match the physical situation. Fig. 16 depicts the
sensitivity of this model to nmin. The model is quite sensitive to the value of this parameter. For the
conditions shown ð� ¼ 100 m2 s�3;D0 ¼ 3 mmÞ, the probability of equal breakage increases by
33% when nmin is changed from 11:4g=D0 to 31:4g=D0. The proper selection of nmin requires
comparison with experimental data.

2.2.4. Surface energy models based on stress balance
Mart�ıınez-Baz�aan et al. (1999b) developed a model for the daughter bubble size distribution

resulting from the break-up of air bubbles at the centerline of a high Reynolds number, turbulent
water jet. This model assumes that when a mother particle breaks, two daughter particles are
formed ðmðD0Þ ¼ 2Þ with diameters D1 and D2. The validity of this assumption is supported by
high-speed video images, given in Mart�ıınez-Baz�aan et al. (1999b). Diameters D1 and D2 are related
through the conservation of mass. Therefore,

D2 ¼ D0 1

"
� D1

D0

� �3#1=3
: ð69Þ

If the particle-splitting process were purely random, then a uniform distribution, like that chosen
by Prince and Blanch (1990), and others, would be relevant to the physics of the problem.
However, pressure fluctuations in homogeneous and isotropic turbulence are not uniformly dis-
tributed over all scales. This means that st, given in Eq. (41), is not uniformly distributed and
therefore the splitting process cannot be purely random. In fact, there is a distance, Dmin over
which stðDminÞ ¼ ssðD0Þ. At this distance, the turbulent pressure fluctuations are exactly equal to
the confinement forces for a mother particle of size D0. The probability of breaking off a daughter
particle with D1 < Dmin ¼ ð12r=ðbqD0ÞÞ3=2��1 should therefore be zero.
The fundamental postulate of the Mart�ıınez-Baz�aan model is that the probability of splitting off a

daughter particle of any size such that Dmin < D1 < D0 is proportional to the difference between
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the turbulent stresses over a length D1 and the confinement forces holding the mother particle of
size D0 together. For the formation of a daughter particle of size D1, the difference in stresses is
given by Dst1 ¼ 1

2
qbð�D1Þ2=3 � 6r=D0: For each daughter particle of size D1, a complementary

daughter particle of size D2 is formed with a difference of stresses given by Dst2 ¼ 1
2
qbð�D2Þ2=3�

6r=D0: The model states that the probability of forming a pair of complementary daughter
particles of sizes D1 and D2 from splitting a mother particle of size D0 is related to the product of
the excess stresses associated with the length scales corresponding to each daughter particle size.
That is,

PðD1=D0Þ /
1

2
qb �D1ð Þ2=3

�
� 6r
D0

�
1

2
qb �D2ð Þ2=3

�
� 6r
D0

�
: ð70Þ

Relating D1 and D2 through the mass balance given by Eq. (69) above yields

PðD�Þ / 1

2
qb �D0ð Þ2=3

� �2
D�2=3
h

� K5=3
i
1
�h

� D�3�2=9 � K5=3
i
; ð71Þ

where D� ¼ D1=D0, K ¼ Dc=D0 ¼ ðDmin=D0Þ2=5. Dc is the critical diameter defined as Dc ¼
ð12r=ðbqÞÞ3=5��2=5. Note the difference between the critical diameter, Dc, and the minimum di-
ameter, Dmin. The critical diameter applies to the mother particle and defines the minimum particle
size for a given dissipation rate of turbulent kinetic energy for which break-up can occur. The
minimum diameter, on the other hand, applies to the daughter particles and defines the distance
over which the turbulent normal stresses just balance the confinement forces of a mother particles
of size D0. The minimum diameter, therefore, gives the minimum length over which the underlying
turbulence can pinch off a piece of the mother particle. This length is not arbitrarily selected;
rather, its determination is based on kinematics.
This model assumes that the size of the particles is in the inertial subrange. Therefore, it implies

that Dmin6D16Dmax provided that Dmin > g, where g is the Kolmogorov length scale of the
underlying turbulence. Otherwise, Dmin is taken to be equal to g. Also, note that Dmax and Dmin are
related through Eq. (69). No assumption needs to be made about the minimum and maximum
eddy size that can cause particle break-up. All eddies with sizes between the Kolmogorov scale
and the integral scale are taken into account.
The daughter particle probability density function can be obtained from the expression given in

Eq. (71) by utilizing the normalization condition
R D�

max

D�
min

PðD�ÞdðD�Þ ¼ 1: The pdf of the ratio of
diameters D� ¼ D1=D0, f �ðD�Þ, can then be written as

f �ðD�Þ ¼ ½D�2=3 � K5=3�½ð1� D�3Þ2=9 � K5=3�R D�
max

D�
min

½D�2=3 � K5=3�½ð1� D�3Þ2=9 � K5=3�dðD�Þ
: ð72Þ

Note that f ðD1;D0Þ ¼ f �ðD�Þ=D0.
The Mart�ıınez-Baz�aan model, Eq. (72), is plotted in Figs. 17 and 18. In Fig. 17, the size of the

mother particle is D0 ¼ 3 mm and the dissipation rate of turbulent kinetic energy, �, is varied over
three orders of magnitude. In Fig. 18, � ¼ 1000 m2 s�3 and the diameter of the mother particle is
varied from 0.4 to 3 mm. In all cases, the peak of the pdf is located at D� ¼ 0:8. This value
corresponds to the formation of two daughter particles of the same volume. This result differs
from the collision-based phenomenological models for the daughter particle size distribution,
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although it agrees with the hybrid model proposed by Konno. Notice that the size pdf becomes
wider as either � or D0 are increased. This behavior is intuitive. A greater value of � means that the
underlying turbulence is stronger, leading to an increase in the fraction of the overall energy
contained in smaller scales. In other words, as � increases, Dmin decreases, making the formation of
smaller daughter particles more probable. Similarly, as D0 increases, a larger fraction of the eddies
in the inertial subrange have sizes which are smaller than the mother particle. Therefore, the
probability of creating smaller daughter particles increases.
To summarize, statistical models for the daughter particle size distribution lack physical sup-

port. The models based eddy collision arguments rely on the assumption that turbulence consists
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of a collection of eddies that can be treated like molecules in the kinetic theory of gases. Further,
they require the specification of the minimum and maximum eddy sizes that are capable of causing
particle break-up (beyond the requirement that these eddies are within the inertial subrange). The
models can be quite sensitive to these parameters. In the following section, we compare the most
popular of these phenomenological models for f ðD;D0Þ, along with Konno’s hybrid model, with
experimental data obtained from the break-up of air bubbles immersed in a high Reynolds
number, submerged water jet (for further comparisons, see Mart�ıınez-Baz�aan et al. (1999a,b)).

3. Comparison with experimental data

We conducted an experimental investigation of the fragmentation of an air cavity injected into
a high Reynolds number, submerged, water jet. A detailed description of the experimental facility
and of the measurement techniques employed is given in Mart�ıınez-Baz�aan (1998) and in Mart�ıınez-
Baz�aan et al. (1999a,b). Only the key features of the experiment will be presented here.
First, the mean velocities and turbulence properties of a submerged, high Reynolds number

water jet were measured using a combination of hot-wire and laser Doppler anemometry. Sub-
sequently, air was injected continuously through a small-diameter, hypodermic needle located at
the centerline in the fully developed region of the water jet. A variety of needle diameters were
used in order to vary the bubble size distribution independently of the flow conditions. Similarly,
various jet Reynolds numbers were tested to systematically vary the level of background turbu-
lence for each of the needle diameters employed. The injection velocity of the air was selected to
match the mean centerline velocity of the water jet at the point of injection. Since the air bubbles
were convected at the local mean velocity of the water jet, the break-up was caused solely by to the
turbulent fluctuations existing at the surface of each bubble. Digital images of the break-up
process were captured at successive, downstream locations from the air injection point, until a
location was reached at which the underlying turbulence was no longer strong enough to continue
to break the bubbles. Using the images collected, the bubble size distribution was determined at
each measurement location. As the air bubbles were fragmented and convected downstream, their
radial dispersion was limited to a region about the centerline of the water jet that was less than
30% of the local jet diameter. Therefore, the turbulence encountered by the air bubbles was nearly
spatially uniform and isotropic.
The results of these experiments were compared to the models for turbulent particle break-up

developed by Konno et al. (1980, 1983), Tsouris and Tavlarides (1994), Luo and Svendsen (1996),
and Mart�ıınez-Baz�aan et al. (1999a,b). The expressions for gðDÞ;mðD0Þ, and f ðD;D0Þ derived by
these authors were substituted into the following equation:

oðUnÞ
ox

¼
Z 1

D
mðD0Þf ðD;D0ÞgðD0ÞnðD0; tÞdD0 � gðDÞnðD; tÞ; ð73Þ

where UðxÞ is the mean centerline velocity of the water jet, and the other terms are as defined in
Section 1. Note that UðxÞ is the mean convective velocity of all bubbles, vðD; x; tÞ, regardless of
their size. Eq. (73) was integrated to determine the downstream evolution of the cumulative
bubble volume pdf for each of these models.
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A comparison of the model predictions with our experimental data is shown in Figs. 19–22. The
figures portray the evolution of the cumulative bubble volume pdf with downstream distance. For this
set of data, air was injected at 15 nozzle diameters downstream from the water nozzle exit. The hy-
podermic needle used to inject the air had an inner diameter of 0.394 mm and the air injection velocity
was 9.84 m/s. The jet Reynolds number based on the diameter of the water nozzle and on the exit
velocity of the water was 25,500. The dissipation rate of turbulent kinetic energy at the air injection
point, �0, was 1000 m

2 s�3. The initial condition used in Eq. (73) was the bubble size distribution
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existing 2.2 water nozzle diameters downstream from the air injection point ðX=Dj ¼ 17:2Þ. In the
figures, experimental results are displayed as symbols, model predictions are displayed as lines.
It is immediately apparent that the collision-based models of Tsouris and Tavlarides and

Luo and Svendsen, shown in Figs. 19 and 20 fail to capture the downstream evolution of the
cumulative volume pdf. The relationships for f ðD;D0Þ in each of these models favor the forma-
tion of a very small daughter bubble and its complementary very large daughter bubble for each
break-up event. Because of this assumption, both of these models underpredict the fraction of
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intermediately sized bubbles seen in the cumulative volume pdf. Although the Luo and Svendsen
relation for f ðD;D0Þ does depend on �, it does not exhibit better agreement with this experimental
data set than the Tsouris and Tavlarides model, which has no dependence on �. Neither of these
models adequately capture the physics of this process.
The results obtained from the model of Konno et al. are shown in Fig. 21. As described in the

previous sections, Konno utilized a collision-based model for gðDÞ similar to Coulaloglou and
Tavlarides; however, his hybrid model for the daughter particle pdf differs from the collision-
based models for f ðD;D0Þ in that it predicts a maximum probability for the formation of two,
equally sized, daughter bubbles. This model is well-approximated by the universal function given
in Eq. (57), which has no dependence on �. As a result, Konno’s model over-predicts break-up as
the bubbles are convected into regions of successively lower dissipation rates. This is seen in the
figure by the fact that the lines representing Konno’s model lie above the points representing the
experimental data for intermediate bubble diameters.
The predictions of the Mart�ıınez-Baz�aan et al. model are shown in Fig. 22. Both the expression

for gðDÞ and the expression for f ðD;D0Þ in this model are based on the kinematics existing at the
surface of each bubble. Although this model is conceptually and mathematically simpler than the
others, it predicts the experimental results much more accurately. The model seems to slightly
under-predict the formation of intermediately sized bubbles at X=Dj ¼ 27:39 and slightly under-
predict the formation of small bubbles at X=Dj ¼ 34:04; however, the overall agreement with the
experimental data is excellent. Further comparisons of this model with experimental data are
shown in Mart�ıınez-Baz�aan et al. (1999b).

4. Conclusions

We have comparatively described various models proposed in the literature for the break-up of
a fluid lump immersed into a fully developed turbulent flow. Comparison between the predictions
resulting from these models and experimental data have shown that the simple phenomenological
models proposed by Mart�ıınez-Baz�aan et al. (1999a,b), based purely on kinematic considerations,
better predict the experimental data while simultaneously requiring fewer closure parameters.
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